Small Instanton Transitions Between the Gauge and Gravitational Sectors

Callum Brodie

Based on work with
Lara Anderson and James Gray
(first paper soon to appear)

String Phenomenology 2022
Liverpool, July 7th 2022

VIRGINIA TECH.

Gauge bundle + topological transition = ?

Topological transitions between CY3s well-studied

Gauge bundle + topological transition $=$?

Topological transitions between CY3s well-studied
But added complication for heterotic string: gauge bundle

Gauge bundle + topological transition $=$?

Topological transitions between CY3s well-studied
But added complication for heterotic string: gauge bundle
Proposals of pure 'spectator' have anomaly (c_{2}) problems

Gauge bundle + topological transition $=$?

Topological transitions between CY3s well-studied
But added complication for heterotic string: gauge bundle
Proposals of pure 'spectator' have anomaly (c_{2}) problems
This talk:
How to take 5-brane theory through transition in anomaly-consistent way
(And how to absorb back to get the two bundles)

Gauge bundle + topological transition $=$?

Topological transitions between CY3s well-studied
But added complication for heterotic string: gauge bundle
Proposals of pure 'spectator' have anomaly (c_{2}) problems
This talk:
How to take 5-brane theory through transition in anomaly-consistent way
(And how to absorb back to get the two bundles)
Will lead directly to idea of small instanton transition between gauge and gravitational sectors

Gauge bundle + topological transition = ?

Topological transitions between CY3s well-studied
But added complication for heterotic string: gauge bundle
Proposals of pure 'spectator' have anomaly (c_{2}) problems
This talk:
How to take 5-brane theory through transition in anomaly-consistent way
(And how to absorb back to get the two bundles)
Will lead directly to idea of small instanton transition between gauge and gravitational sectors

See James's talk from Monday for:

- How following picture is inspired by target space duality
- More details on the pure bundle picture

The conifold transition

The conifold transition

Importantly:

- Changes $h^{1,1}$ and $h^{2,1}$ (and so number of geometrical moduli)
- Changes c_{2} (morally ' $c_{2}\left(X_{\text {def. }}\right)=c_{2}\left(X_{\text {res. }}.\right)+\left[\mathbb{P}^{1} \mathrm{~s}^{\prime}{ }^{\prime}\right)$

The conifold transition

Importantly:

- Changes $h^{1,1}$ and $h^{2,1}$ (and so number of geometrical moduli)
- Changes c_{2} (morally ' $\left.c_{2}\left(X_{\text {def. }}\right)=c_{2}\left(X_{\text {res. }}.\right)+\left[\mathbb{P}^{1} \mathrm{~s}\right]^{\prime}\right)$

Change in (co-)tangent bundle captured by:

$$
0 \rightarrow \pi^{*} \Omega_{\text {nod. }} \rightarrow \Omega_{\text {res. }} \rightarrow \mathcal{O}_{\mathbb{P}^{1}{ }_{\mathrm{s}}}(-2) \rightarrow 0
$$

The conifold transition

Importantly:

- Changes $h^{1,1}$ and $h^{2,1}$ (and so number of geometrical moduli)
- Changes c_{2} (morally ' $\left.c_{2}\left(X_{\text {def. }}\right)=c_{2}\left(X_{\text {res. }}.\right)+\left[\mathbb{P}^{1} \mathrm{~s}\right]^{\prime}\right)$

Change in (co-)tangent bundle captured by:

$$
0 \rightarrow \pi^{*} \Omega_{\text {nod. }} \rightarrow \Omega_{\text {res. }} \rightarrow \mathcal{O}_{\mathbb{P}^{1} \mathrm{~s}}(-2) \rightarrow 0
$$

Example (which we will use repeatedly):

$$
\left.\begin{array}{ccccc}
X_{\text {def. }} & \rightarrow & X_{\text {nod. }} & \rightarrow & X_{\text {res. }} \\
{\left[\mathbb{P}^{4} \mid 5\right]^{1,101}} & & \operatorname{det}\left(\begin{array}{cc}
l_{1} & l_{2} \\
q_{1} & q_{2}
\end{array}\right)=0 & &
\end{array} \begin{array}{ll|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{4} & 1 & 4
\end{array}\right]^{2,86}
$$

Divisors associated to the transition

Important fact for this story:

Special divisors appear in nodal limit (Weil but non-Cartier)
(Captures appearance of new divisors as $\left.h^{1,1}\left(X_{\text {def. }}\right) \rightarrow h^{1,1}\left(X_{\text {res }}.\right)\right)$

Divisors associated to the transition

Important fact for this story:

Special divisors appear in nodal limit (Weil but non-Cartier) (Captures appearance of new divisors as $\left.h^{1,1}\left(X_{\text {def. }}\right) \rightarrow h^{1,1}\left(X_{\text {res. }}\right)\right)$

Easy to describe:
Generally for ' \mathbb{P}^{n}-splits': Image of hyperplane $\left\{x_{i}=0\right\}$ of $\mathbb{P}^{n}[x]$
E.g. in our example: $D=\left\{l_{1}=q_{1}=0\right\} \subset X_{\text {nod }}$.

Curves associated to the transition

Important point:
Such a divisor defines a pair of curves across the transition
Namely: curves which limit to this divisor from each side

Curves associated to the transition

Important point:
Such a divisor defines a pair of curves across the transition
Namely: curves which limit to this divisor from each side

Easiest to describe in example:

$X_{\text {nod. }}$
$D=\left\{l_{1}=q_{1}=0\right\}$
$C_{\mathrm{res} .}=\left\{x_{1}=Q=0\right\}$

Curves associated to the transition

Important point:

Such a divisor defines a pair of curves across the transition
Namely: curves which limit to this divisor from each side

Easiest to describe in example:

$$
\begin{array}{ccc}
X_{\text {def. }} & X_{\text {nod. }} & X_{\text {res. }} \\
\cup & \cup & \cup \\
C_{\text {def. }}=\left\{l_{1}=q_{1}=0\right\} & D=\left\{l_{1}=q_{1}=0\right\} & C_{\text {res. }}=\left\{x_{1}=Q=0\right\}
\end{array}
$$

And $C_{\text {def. }} \cong C_{\text {res. }} \cong\left[\begin{array}{l|llll}\mathbb{P}^{1} & 1 & 0 & 1 & 1 \\ \mathbb{P}^{4} & 0 & 5 & 1 & 4\end{array}\right]$ (inter. in joint ambient space)

Dual 5-brane theories

Consider wrapping 5-branes on $C_{\text {def. }} \subset X_{\text {def. and }} C_{\text {res. }} \subset X_{\text {res }}$.

Dual 5-brane theories

Consider wrapping 5-branes on $C_{\text {def. }} \subset X_{\text {def. }}$ and $C_{\text {res. }} \subset X_{\text {res }}$.

One can prove in generality that for these two theories:

- The anomaly will be cancelled on both sides (with spectator)

Dual 5-brane theories

Consider wrapping 5-branes on $C_{\text {def. }} \subset X_{\text {def. }}$ and $C_{\text {res. }} \subset X_{\text {res }}$.

One can prove in generality that for these two theories:

- The anomaly will be cancelled on both sides (with spectator)
- The moduli will match on both sides

So these are dual 5-brane theories

The moduli matching

In (simplest case of) conifold $X_{\text {def. }} \rightarrow X_{\text {res. }}$,

$$
\begin{aligned}
h^{1,1}\left(X_{\text {res. }}\right)+h^{2,1}\left(X_{\text {res. }}\right) & =\left(h^{1,1}\left(X_{\text {def. }}\right)+1\right)+\left(h^{2,1}\left(X_{\text {def. }}\right)-\# \mathbb{P}^{1} \mathrm{~s}+1\right) \\
& =h^{1,1}\left(X_{\text {def. }}\right)+h^{2,1}\left(X_{\text {def. }}\right)+2-\# \mathbb{P}^{1} \mathrm{~s}
\end{aligned}
$$

The moduli matching

In (simplest case of) conifold $X_{\text {def. }} \rightarrow X_{\text {res. }}$,

$$
\begin{aligned}
h^{1,1}\left(X_{\text {res. }}\right)+h^{2,1}\left(X_{\text {res. }}\right) & =\left(h^{1,1}\left(X_{\text {def. }}\right)+1\right)+\left(h^{2,1}\left(X_{\text {def. }}\right)-\# \mathbb{P}^{1} \mathrm{~S}+1\right) \\
& =h^{1,1}\left(X_{\text {def. }}\right)+h^{2,1}\left(X_{\text {def. }}\right)+2-\# \mathbb{P}^{1} \mathrm{~s}
\end{aligned}
$$

Change needs to be balanced by difference in brane moduli,

$$
h^{0}\left(C_{\text {res. },}, \mathcal{N}_{C_{\text {res }}}\right)-h^{0}\left(C_{\text {def. },}, \mathcal{N}_{C_{\text {def. }}}\right)+2-\# \mathbb{P}^{1} \mathrm{~S} \stackrel{?}{=} 0
$$

The moduli matching

In (simplest case of) conifold $X_{\text {def. }} \rightarrow X_{\text {res. }}$,

$$
\begin{aligned}
h^{1,1}\left(X_{\text {res. }}\right)+h^{2,1}\left(X_{\text {res. }}\right) & =\left(h^{1,1}\left(X_{\text {def. }}\right)+1\right)+\left(h^{2,1}\left(X_{\text {def. }}\right)-\# \mathbb{P}^{1} \mathrm{~S}+1\right) \\
& =h^{1,1}\left(X_{\text {def. }}\right)+h^{2,1}\left(X_{\text {def. }}\right)+2-\# \mathbb{P}^{1} \mathrm{~s}
\end{aligned}
$$

Change needs to be balanced by difference in brane moduli,

$$
h^{0}\left(C_{\text {res. },}, \mathcal{N}_{C_{\text {res }}}\right)-h^{0}\left(C_{\text {def. },}, \mathcal{N}_{C_{\text {def. }}}\right)+2-\# \mathbb{P}^{1} \mathrm{~S} \stackrel{?}{=} 0
$$

Lift computations to D, find: (where eqs $(Y)=\operatorname{eqs}\left(X_{\text {nod }}\right)-\binom{$ nodal }{ equl }$)$
$h^{0}\left(C_{\text {res }}, \mathcal{N}_{C_{\text {res }}}\right)=\operatorname{ind}\left(\operatorname{det}\left(\mathcal{N}_{D / Y}\right)\right), \quad h^{0}\left(C_{\text {def. }}, \mathcal{N}_{C_{\text {def. }}}\right)=\operatorname{ind}\left(\mathcal{N}_{D / Y}\right)$

The moduli matching

In (simplest case of) conifold $X_{\text {def. }} \rightarrow X_{\text {res. }}$,

$$
\begin{aligned}
h^{1,1}\left(X_{\text {res. }}\right)+h^{2,1}\left(X_{\text {res. }}\right) & =\left(h^{1,1}\left(X_{\text {def. }}\right)+1\right)+\left(h^{2,1}\left(X_{\text {def. }}\right)-\# \mathbb{P}^{1} \mathrm{~s}+1\right) \\
& =h^{1,1}\left(X_{\text {def. }}\right)+h^{2,1}\left(X_{\text {def. }}\right)+2-\# \mathbb{P}^{1} \mathrm{~s}
\end{aligned}
$$

Change needs to be balanced by difference in brane moduli,

$$
h^{0}\left(C_{\text {res. },}, \mathcal{N}_{\text {Cres. }}\right)-h^{0}\left(C_{\text {def. },} \mathcal{N}_{C_{\text {def. }}}\right)+2-\# \mathbb{P}^{1} \mathrm{~S} \stackrel{?}{=} 0
$$

Lift computations to D, find: (where eqs $(Y)=\operatorname{eqs}\left(X_{\text {nod }}\right)-\binom{$ nodal }{ equl }$)$
$h^{0}\left(C_{\text {res. },}, \mathcal{N}_{C_{\text {res. }}}\right)=\operatorname{ind}\left(\operatorname{det}\left(\mathcal{N}_{D / Y}\right)\right), \quad h^{0}\left(C_{\text {def. }}, \mathcal{N}_{C_{\text {def. }}}\right)=\operatorname{ind}\left(\mathcal{N}_{D / Y}\right)$
And taking indices on twist of Koszul resolution

$$
0 \rightarrow \operatorname{det}\left(\mathcal{N}_{D}^{\vee}\right) \otimes K_{D} \rightarrow \mathcal{N}_{D}^{\vee} \otimes K_{D} \rightarrow K_{D} \rightarrow \mathcal{O}_{D \cdot D} \rightarrow 0
$$

shows precisely the required relation (using $D \cdot D=\# \mathbb{P}^{1}$ s)
So the moduli indeed match (in remarkable non-trivial way)

Going through the transition?

Natural to ask: Do these theories connect through transition?

Going through the transition?

Natural to ask: Do these theories connect through transition?
By construction, their descriptions coincide at the nodal variety

(The 'brane' jumps in dimension here . . . Don't yet understand significance)

Going through the transition?

Natural to ask: Do these theories connect through transition?
By construction, their descriptions coincide at the nodal variety

(The 'brane' jumps in dimension here . . . Don't yet understand significance)
And duality then explained by symmetry in deforming away
E.g. in our example: both sides deformed by quintic polynomial

- controlling geometry in $X_{\text {def. }}$ and 5-brane in $X_{\text {res. }}$

But ...

But: Slightly too quick to say descriptions coincide . . .

But . . .

But: Slightly too quick to say descriptions coincide . . .
The curve $C_{\text {res. }}$. limits to the proper transform \tilde{D} of D
But taking transition seriously, actually $D \rightarrow \pi^{-1}(D)$ on $X_{\text {res }}$.

But . . .

But: Slightly too quick to say descriptions coincide . . .
The curve $C_{\text {res. }}$. limits to the proper transform \tilde{D} of D
But taking transition seriously, actually $D \rightarrow \pi^{-1}(D)$ on $X_{\text {res }}$.

Difference between \tilde{D} and $\pi^{-1}(D)$ is captured by:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}_{\mathrm{s}}}(-2) \rightarrow \mathcal{O}_{\pi^{-1}(D)} \otimes \mathcal{O}_{X_{\text {res. }}}(\tilde{D}) \rightarrow \mathcal{O}_{\tilde{D}} \rightarrow 0
$$

(Twist of $\mathcal{O}_{\pi^{-1}(D)}$ by $\mathcal{O}_{X_{\text {res }} .}(\tilde{D})$ is subtle, but: disappears upon deformation to $X_{\text {def. }}$.)

But . . .

But: Slightly too quick to say descriptions coincide . . .
The curve $C_{\text {res. }}$. limits to the proper transform \tilde{D} of D
But taking transition seriously, actually $D \rightarrow \pi^{-1}(D)$ on $X_{\text {res }}$.

Difference between \tilde{D} and $\pi^{-1}(D)$ is captured by:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}_{\mathrm{s}}}(-2) \rightarrow \mathcal{O}_{\pi^{-1}(D)} \otimes \mathcal{O}_{X_{\text {res. }}}(\tilde{D}) \rightarrow \mathcal{O}_{\tilde{D}} \rightarrow 0
$$

(Twist of $\mathcal{O}_{\pi^{-1}(D)}$ by $\mathcal{O}_{X_{\text {res }} .}(\tilde{D})$ is subtle, but: disappears upon deformation to $X_{\text {def. }}$.)
So seem to need extra 5-brane $\mathcal{O}_{\mathbb{P}^{1}}(-2)$ on $X_{\text {res. }}$. for theory on $X_{\text {res. }}$ to meet theory coming from $X_{\text {def. }}$..

Gravitational small instanton transition

But: recall $\mathcal{O}_{\mathbb{P}^{1}}(-2)$ is exactly what's needed in gravitational sector (cotangent bundle) to complete transition $X_{\text {res. }} \rightarrow X_{\text {def. }}$,

$$
0 \rightarrow \pi^{*} \Omega_{\text {nod. }} \rightarrow \Omega_{\text {res. }} \rightarrow \mathcal{O}_{\mathbb{P}^{1} \mathrm{~s}}(-2) \rightarrow 0
$$

(Here absorbing skyscraper sheaf into bundle, so interpretation is as a Hecke transform, where $\mathcal{O}_{\mathbb{P} 1_{\mathrm{s}}}(-2)$ is absorbed into Ω_{res}. to give $\pi^{*} \Omega_{\mathrm{nod}}$.)

Gravitational small instanton transition

But: recall $\mathcal{O}_{\mathbb{P}_{\mathrm{s}}}(-2)$ is exactly what's needed in gravitational sector (cotangent bundle) to complete transition $X_{\text {res. }} \rightarrow X_{\text {def. }}$,

$$
0 \rightarrow \pi^{*} \Omega_{\text {nod. }} \rightarrow \Omega_{\text {res. }} \rightarrow \mathcal{O}_{\mathbb{P}^{1}{ }_{\mathrm{s}}}(-2) \rightarrow 0
$$

(Here absorbing skyscraper sheaf into bundle, so interpretation is as a Hecke transform, where $\mathcal{O}_{\mathbb{P} 1_{\mathrm{s}}}(-2)$ is absorbed into Ω_{res}, to give $\pi^{*} \Omega_{\mathrm{nod}}$.)

So our duality of 5-brane theories suggests a process of pair creation of '5-branes': one gauge and one gravitational
which performs the transition in an anomaly-consistent way
(This process also seems to naturally underlie target space duality - see James's talk)

Absorption back into bundles

So far discussed 5-branes, but finally absorb (into a spectator bundle V_{0} [Candelas et al. 0706.3134]) via small instanton transitions,

$$
\begin{gathered}
0 \rightarrow V_{\text {def. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {def. }}} \rightarrow \mathcal{O}_{C_{\text {def. }}} \rightarrow 0 \\
0 \rightarrow V_{\text {res. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {res. }}} \rightarrow \mathcal{O}_{C_{\text {res. }}} \rightarrow 0
\end{gathered}
$$

Absorption back into bundles

So far discussed 5-branes, but finally absorb (into a spectator bundle V_{0} [Candelas et al. 0706.3134]) via small instanton transitions,

$$
\begin{gathered}
0 \rightarrow V_{\text {def. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {def. }}} \rightarrow \mathcal{O}_{C_{\text {def. }}} \rightarrow 0 \\
0 \rightarrow V_{\text {res. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {res. }}} \rightarrow \mathcal{O}_{C_{\text {res. }}} \rightarrow 0
\end{gathered}
$$

- Anomaly cancellation manifestly preserved

Absorption back into bundles

So far discussed 5-branes, but finally absorb (into a spectator bundle V_{0} [Candelas et al. 0706.3134]) via small instanton transitions,

$$
\begin{aligned}
& 0 \rightarrow V_{\text {def. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {def. }}} \rightarrow \mathcal{O}_{C_{\text {def. }}} \rightarrow 0 \\
& 0 \rightarrow V_{\text {res. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {res. }}} \rightarrow \mathcal{O}_{C_{\text {res. }}} \rightarrow 0
\end{aligned}
$$

- Anomaly cancellation manifestly preserved
- Moduli matching preserved since for Hecke transform:
$\operatorname{Ext}^{1}(V, V)=H^{1}\left(V_{0} \otimes V_{0}^{\vee}\right) \oplus \operatorname{Ext}^{1}\left(V_{0}, \mathcal{I}_{C}\right) \oplus \operatorname{Ext}^{1}\left(\mathcal{I}_{C}, V_{0}\right) \oplus H^{0}\left(C, \mathcal{N}_{C}\right)$
(Change in moduli to full bundle is understood)

Absorption back into bundles

So far discussed 5-branes, but finally absorb (into a spectator bundle V_{0} [Candelas et al. 0706.3134]) via small instanton transitions,

$$
\begin{aligned}
& 0 \rightarrow V_{\text {def. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {def. }}} \rightarrow \mathcal{O}_{C_{\text {def. }}} \rightarrow 0 \\
& 0 \rightarrow V_{\text {res. }} \rightarrow V_{0} \oplus \mathcal{O}_{X_{\text {res. }}} \rightarrow \mathcal{O}_{C_{\text {res. }}} \rightarrow 0
\end{aligned}
$$

- Anomaly cancellation manifestly preserved
- Moduli matching preserved since for Hecke transform:
$\operatorname{Ext}^{1}(V, V)=H^{1}\left(V_{0} \otimes V_{0}^{\vee}\right) \oplus \operatorname{Ext}^{1}\left(V_{0}, \mathcal{I}_{C}\right) \oplus \operatorname{Ext}^{1}\left(\mathcal{I}_{C}, V_{0}\right) \oplus H^{0}\left(C, \mathcal{N}_{C}\right)$
(Change in moduli to full bundle is understood)

So establish duality of bundle theories (precisely those in TSD) and (claimed) description of a transition between them

Conclusions

Conclusions

- Evidence for small instanton transition between gravitational and gauge sector

Conclusions

- Evidence for small instanton transition between gravitational and gauge sector
- Procedure to carry heterotic gauge bundle through topological transitions preserving anomaly cancellation

Conclusions

- Evidence for small instanton transition between gravitational and gauge sector
- Procedure to carry heterotic gauge bundle through topological transitions preserving anomaly cancellation
- General method to construct dual heterotic 5-brane theories on CYs with different topologies

Conclusions

- Evidence for small instanton transition between gravitational and gauge sector
- Procedure to carry heterotic gauge bundle through topological transitions preserving anomaly cancellation
- General method to construct dual heterotic 5-brane theories on CYs with different topologies
- Part of moduli space of heterotic theories on higher $h^{1,1}$ CYs given by theories on lower $h^{1,1}$ CYs

