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Gauge bundle + topological transition = ?

Topological transitions between CY3s well-studied

But added complication for heterotic string: gauge bundle

Proposals of pure ‘spectator’ have anomaly (c2) problems

This talk:
How to take 5-brane theory through transition

in anomaly-consistent way

(And how to absorb back to get the two bundles)

Will lead directly to idea of small instanton transition
between gauge and gravitational sectors

See James’s talk from Monday for:

• How following picture is inspired by target space duality

• More details on the pure bundle picture
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The conifold transition

Importantly:
• Changes h1,1 and h2,1 (and so number of geometrical moduli)

• Changes c2 (morally ‘c2(Xdef.) = c2(Xres.) + [P1s]’)

Change in (co-)tangent bundle captured by:

0→ π∗Ωnod. → Ωres. → OP1s(−2)→ 0

Example (which we will use repeatedly):

Xdef. → Xnod. → Xres.[
P4 5

]1,101
det

(
l1 l2
q1 q2

)
= 0

[
P1 1 1
P4 1 4

]2,86
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Divisors associated to the transition

Important fact for this story:
Special divisors appear in nodal limit (Weil but non-Cartier)

(Captures appearance of new divisors as h1,1(Xdef.)→ h1,1(Xres.))

Easy to describe:

Generally for ‘Pn-splits’: Image of hyperplane {xi = 0} of Pn[x]

E.g. in our example: D = {l1 = q1 = 0} ⊂ Xnod.



Divisors associated to the transition

Important fact for this story:
Special divisors appear in nodal limit (Weil but non-Cartier)

(Captures appearance of new divisors as h1,1(Xdef.)→ h1,1(Xres.))

Easy to describe:

Generally for ‘Pn-splits’: Image of hyperplane {xi = 0} of Pn[x]

E.g. in our example: D = {l1 = q1 = 0} ⊂ Xnod.



Curves associated to the transition

Important point:
Such a divisor defines a pair of curves across the transition

Namely: curves which limit to this divisor from each side

Easiest to describe in example:
Xdef. Xnod. Xres.

∪ ∪ ∪
Cdef. = {l1 = q1 = 0} D = {l1 = q1 = 0} Cres. = {x1 = Q = 0}

And Cdef.
∼= Cres.

∼=
[
P1 1 0 1 1
P4 0 5 1 4

]
(inter. in joint ambient space)
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Dual 5-brane theories

Consider wrapping 5-branes on Cdef. ⊂ Xdef. and Cres. ⊂ Xres.

One can prove in generality that for these two theories:

• The anomaly will be cancelled on both sides (with spectator)

• The moduli will match on both sides

So these are dual 5-brane theories
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The moduli matching

In (simplest case of) conifold Xdef. → Xres.,

h1,1(Xres.) + h2,1(Xres.) = (h1,1(Xdef.) + 1) + (h2,1(Xdef.)−#P1s + 1)

= h1,1(Xdef.) + h2,1(Xdef.) + 2−#P1s

Change needs to be balanced by difference in brane moduli,

h0(Cres.,NCres.)− h0(Cdef.,NCdef.
) + 2−#P1s

?
= 0

Lift computations to D, find: (where eqs(Y ) = eqs(Xnod.)− ( nodal
eqn ))

h0(Cres.,NCres.) = ind(det(ND/Y )) , h0(Cdef.,NCdef.
) = ind(ND/Y )

And taking indices on twist of Koszul resolution

0→ det(N∨D)⊗KD → N∨D ⊗KD → KD → OD·D → 0

shows precisely the required relation (using D ·D = #P1s)

So the moduli indeed match (in remarkable non-trivial way)
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Going through the transition?

Natural to ask: Do these theories connect through transition?

By construction, their descriptions coincide at the nodal variety

(The ‘brane’ jumps in dimension here . . . Don’t yet understand significance)

And duality then explained by symmetry in deforming away

E.g. in our example: both sides deformed by quintic polynomial
- controlling geometry in Xdef. and 5-brane in Xres.
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But . . .

But: Slightly too quick to say descriptions coincide . . .

The curve Cres. limits to the proper transform D̃ of D

But taking transition seriously, actually D → π−1(D) on Xres.

Difference between D̃ and π−1(D) is captured by:

0→ OP1s(−2)→ Oπ−1(D) ⊗OXres.(D̃)→ OD̃ → 0

(Twist of Oπ−1(D) by OXres. (D̃) is subtle, but: disappears upon deformation to Xdef.)

So seem to need extra 5-brane OP1s(−2) on Xres.

for theory on Xres. to meet theory coming from Xdef. . . .
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Gravitational small instanton transition

But: recall OP1s(−2) is exactly what’s needed in gravitational
sector (cotangent bundle) to complete transition Xres. → Xdef.,

0→ π∗Ωnod. → Ωres. → OP1s(−2)→ 0

(Here absorbing skyscraper sheaf into bundle, so interpretation is as a Hecke

transform, where OP1s(−2) is absorbed into Ωres. to give π∗Ωnod.)

So our duality of 5-brane theories suggests a process of
pair creation of ‘5-branes’: one gauge and one gravitational

which performs the transition in an anomaly-consistent way

(This process also seems to naturally underlie target space duality - see James’s talk)
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Absorption back into bundles

So far discussed 5-branes, but finally absorb (into a spectator
bundle V0 [Candelas et al. 0706.3134]) via small instanton transitions,

0→ Vdef. → V0 ⊕OXdef.
→ OCdef.

→ 0

0→ Vres. → V0 ⊕OXres. → OCres. → 0

• Anomaly cancellation manifestly preserved

• Moduli matching preserved since for Hecke transform:

Ext1(V, V ) = H1(V0 ⊗ V ∨0 )⊕ Ext1(V0, IC)⊕ Ext1(IC , V0)⊕H0(C,NC)

(Change in moduli to full bundle is understood)

So establish duality of bundle theories (precisely those in TSD)
and (claimed) description of a transition between them
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Conclusions

• Evidence for small instanton transition between
gravitational and gauge sector

• Procedure to carry heterotic gauge bundle through
topological transitions preserving anomaly cancellation

• General method to construct dual heterotic 5-brane
theories on CYs with different topologies

• Part of moduli space of heterotic theories on higher h1,1

CYs given by theories on lower h1,1 CYs
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